Abstract

In intensity-modulated radiation therapy (IMRT) not only is the shape of the beam controlled, but combinations of open and closed multileaf collimators modulate the intensity as well. In this paper, we offer a mixed integer programming approach which allows optimization over beamlet fluence weights as well as beam and couch angles. Computational strategies, including a constraint and column generator, a specialized set-based branching scheme, a geometric heuristic procedure, and the use of disjunctive cuts, are described. Our algorithmic design thus far has been motivated by clinical cases. Numerical tests on real patient cases reveal that good treatment plans are returned within 30 minutes. The MIP plans consistently provide superior tumor coverage and conformity, as well as dose homogeneity within the tumor region while maintaining a low irradiation to important critical and normal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.