Abstract

We provide a subclass of parametric timed automata (PTA) that we can actually and efficiently analyze, and we argue that it retains most of the practical usefulness of PTA. The currently most useful known subclass of PTA, L/U automata, has a strong syntactical restriction for practical purposes, and we show that the associated theoretical results are mixed. We therefore advocate for a different restriction scheme: since in classical timed automata, real-valued clocks are always compared to integers for all practical purposes, we also search for parameter values as bounded integers. We show that the problem of the existence of parameter values such that some TCTL property is satisfied is PSPACE-complete. In such a setting, we can also of course synthesize all the values of parameters and we give symbolic algorithms, for reachability and unavoidability properties, to do it efficiently, i.e., without an explicit enumeration. This also has the practical advantage of giving the result as symbolic constraints between the parameters. We finally report on a few experimental results to illustrate the practical usefulness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.