Abstract
We investigate local optimality conditions of first and second order for integer optimal control problems with total variation regularization via a finite-dimensional switching-point problem. We show the equivalence of local optimality for both problems, which will be used to derive conditions concerning the switching points of the control function. A non-local optimality condition treating back-and-forth switches will be formulated. For the numerical solution, we propose a proximal-gradient method. The emerging discretized subproblems will be solved by employing Bellman’s optimality principle, leading to an algorithm which is polynomial in the mesh size and in the admissible control levels. An adaption of this algorithm can be used to handle subproblems of the trust-region method proposed in Leyffer and Manns, ESAIM: Control Optim. Calc. Var. 28 (2022) 66. Finally, we demonstrate computational results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.