Abstract
Farkas type results are available for solutions to linear systems. These can also include restrictions such as nonnegative solutions or integer solutions. They show that the unsolvability can be reduced to a single constraint that is not solvable and this condition is implied by the original system. Such a result does not exist for integer solution to inequality system because a single inequality is always solvable in integers. But a single equation that does not have nonnegative integer solution exists. We present some cases when polynomial algorithms to find nonnegative integer solutions exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.