Abstract

Both integer and fractional electromagnetically induced Talbot effects are experimentally investigated in a coherent rubidium 5S1/2 - 5P3/2 - 5D5/2 ladder-type system. By launching a probe laser into a periodically modulated lattice constructed by two crossed coupling fields with a small angle inside the rubidium vapor, a high-resolution diffraction pattern is obtained. The diffraction pattern is reproduced completely at detection positions of an integer multiple of twice the Talbot lengths. Meanwhile, the fractional Talbot effect, presented as complicated subimages at special positions, is also clearly observed. Furthermore, the theoretical simulations are conducted and agree well with the experimental results. These results pave the way for studying the control of light dynamics based on the periodically modulated medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.