Abstract

Vehicular Ad Hoc Networks (VANETs) are expected to be the next big step towards safer road transport, supporting applications to exchange information between vehicles. To develop novel applications for this area a high number of tests, considering all traffic situations, are demanded. However, it is unfeasible to reproduce these tests in real life, by the fact that any failure on the applications would cause severe impacts on transport system safety and could risk human lives. Thus, this paper presents the concept, model, and validation for InTAS, a realistic traffic scenario for Ingolstadt. InTAS’ road topology accurately represents Ingolstadt’s real road map. Elements such as buildings, bus stops, and traffic lights were added to the map. Twenty traffic lights systems were simulated according to the real program deployed on the traffic lights. Traffic demand was modeled based on the activitygen method, considering demographic data and real-traffic information. The city’s public transport system was also simulated accordingly to bus time-tables and their routes. The simulation step was implemented considering the best value for device.rerouting.probability, which was defined by evaluating InTAS’ output and real traffic data. The scenario was validated by comparing real-traffic data from 24 measurement points with InTAS’ simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call