Abstract
Bees are important pollinators for ecosystems and agriculture; however, populations have suffered a decline that may be associated with several factors, including habitat loss, climate change, increased vulnerability to diseases and parasites and use of pesticides. The extensive use of neonicotinoids, including imidacloprid, as agricultural pesticides, leads to their persistence in the environment and accumulation in bees, pollen, nectar, and honey, thereby inducing deleterious effects. Forager honey bees face significant exposure to pesticide residues while searching for resources outside the hive, particularly systemic pesticides like imidacloprid. In this study, 360 Apis mellifera bees, twenty-one days old (supposed to be in the forager phase) previously marked were fed syrup (honey and water, 1:1 m/v) containing a lethal dose (0.081 μg/bee) or sublethal dose (0.00081 μg/bee) of imidacloprid. The syrup was provided in plastic troughs, with 250 μL added per trough onto each plastic Petri dish containing 5 bees (50 μL per bee). The bees were kept in the plastic Petri dishes inside an incubator, and after 1 and 4 h of ingestion, the bees were euthanised and stored in an ultra-freezer (−80 °C) for transcriptome analysis. Following the 1-h ingestion of imidacloprid, 1516 genes (73 from lethal dose; 1509 from sublethal dose) showed differential expression compared to the control, while after 4 h, 758 genes (733 from lethal dose; 25 from sublethal) exhibited differential expression compared to the control. All differentially expressed genes found in the brain tissue transcripts of forager bees were categorised based on gene ontology into functional groups encompassing biological processes, molecular functions, and cellular components. These analyses revealed that sublethal doses might be capable of altering more genes than lethal doses, potentially associated with a phenomenon known as insecticide-induced hormesis. Alterations in genes related to areas such as the immune system, nutritional metabolism, detoxification system, circadian rhythm, odour detection, foraging activity, and memory in bees were present after exposure to the pesticide. These findings underscore the detrimental effects of both lethal and sublethal doses of imidacloprid, thereby providing valuable insights for establishing public policies regarding the use of neonicotinoids, which are directly implicated in the compromised health of Apis mellifera bees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.