Abstract

Bioactive glass reacts with body fluids and is gradually dissolved in tissues and in cell cultures. We investigated whether osteoclasts contribute to this process, by culturing newborn rat bone-marrow cells containing osteoclasts on polished bioactive glass plates (glass S53P4). The cultures were inspected at days 1-5 and stained for alkaline phosphatase (ALP) to demonstrate osteoblasts and for tartrate resistant acid phosphatase (TRAP) to visualize osteoclasts. Nonosteoclastic cells proliferated several-fold both on bioactive glass and on plastic, whereas osteoclasts and their precursors matured into multicellular giant cells and degenerated. Most cells on bioactive glass became ALP-positive, whereas on plastic the majority of cells remained ALP-negative. Osteoclasts survived on bioactive glass for 4-5 days, whereas on plastic they degenerated and disappeared after 3 days. Condensed nuclei indicating apoptosis were detected both in degenerating osteoclasts and osteoblasts. The surface of the bioactive glass reacted rapidly forming rounded pits, erosions, and cracks within 24 h in areas occupied by osteoblasts. Light microscopy and scanning electron micrographs demonstrated, however, a smooth surface below the cytoplasm of osteoclasts. This indicates that when applied on an intact bioactive glass surface, osteoclasts were unable to dissolve the glass material within this culture period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call