Abstract

Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a ~45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM.Graphical ᅟ

Highlights

  • Structural technologies are an essential component in the design of precision therapeutics

  • Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right

  • We studied BCAT2 and BCAT2 T186R by LC-FT-ICR MS at 21 T equipped with multiple dissociation modalities

Read more

Summary

Introduction

Structural technologies are an essential component in the design of precision therapeutics. The localization of single amino acid variants and potential post-translational modifications in intact proteins >30 kDa benefits greatly from top-down analysis in a high-field, high-sensitivity Fourier transform ion cyclotron resonance mass spectrometer. Total data acquisition time was approximately 5.4 s (four fills of multipole storage device; 7.5 × precursor AGC target; 3 × charges detected).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.