Abstract

BackgroundIncreasing evidence suggests that olfaction is largely preserved in multiple system atrophy while most patients with Parkinson's disease are hyposmic. Consistent with these observations, recent experimental studies demonstrated olfactory deficits in transgenic Parkinson's disease mouse models, but corresponding data are lacking for MSA models.MethodsOlfactory function and underlying neuropathological changes were investigated in a transgenic multiple system atrophy mouse model based on targeted oligodendroglial overexpression of α-synuclein as well as wild-type controls. The study was divided into (1) a pilot study investigating olfactory preference testing and (2) a long-term study characterizing changes in the olfactory bulb of aging transgenic multiple system atrophy mice.ResultsIn our pilot behavioral study, we observed no significant differences in investigation time in the olfactory preference test comparing transgenic with wild-type animals. These findings were accompanied by unaffected tyrosine hydroxylase-positive cell numbers in the olfactory bulb. Similarly, although a significant age-related increase in the amount of α-synuclein within the olfactory bulb was detected in the long-term study, progressive degeneration of the olfactory bulb could not be verified.ConclusionsOur experimental data show preserved olfaction in a transgenic multiple system atrophy mouse model despite α-synucleinopathy in the olfactory bulb. These findings are in line with the human disorder supporting the concept of a primary oligodendrogliopathy with variable neuronal involvement.

Highlights

  • Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder of unknown etiopathogenesis

  • We observed an age-dependent accumulation of human aSYN (haSYN) immunoreactive inclusions in the olfactory bulb (OB) of tg mice (p = 0.036, Kruskal-Wallis; Table 1)

  • The increase in aSYN load did not convert into OB degeneration, in particular, there were no significant differences in OB volume between the two genotypes (F1, 39 = 3.263, p = 0.079, analysis of variance (ANOVA); Figure 2a)

Read more

Summary

Introduction

Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder of unknown etiopathogenesis. It is characterized clinically by autonomic failure accompanied by parkinsonism and cerebellar ataxia [1]. MSA patients show intact or mildly impaired olfaction whereas most PD patients are hyposmic or sometimes anosmic [3,4,5,6,7,8]. Increasing evidence suggests that olfaction is largely preserved in multiple system atrophy while most patients with Parkinson’s disease are hyposmic. Consistent with these observations, recent experimental studies demonstrated olfactory deficits in transgenic Parkinson’s disease mouse models, but corresponding data are lacking for MSA models

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call