Abstract

We test the hypothesis that the stability and precision of context and visual discrimination memories depend on interactions between the hippocampus (HPC) and other memory storage networks. In four experiments we tested the properties of memories acquired in the absence of the HPC. Long-Evans male rats were exclusively used in all experiments. Experiment 1 evaluated acquisition and retention of context fear memories in rats with prior partial or complete HPC damage. Confirming an earlier report (Zelikowsky et al., 2012) a very small but statistically reliable slowing in a single session of context fear conditioning was found after HPC damage. In contrast, retention of context fear memory was normal after HPC damage up to 30 d after learning. In experiment 2, we found that discrimination between a context paired with foot shocks and a different context never paired with foot shock was retained normally for 15 d. In experiment 3, we replicated the finding of intact context discrimination for at least 15 d in rats who display a significant impairment in acquisition of place learning in the Morris water task (MWT). In final experiment using an appetitive object discrimination task, we showed normal retention of the discrimination for at least 30 d after training in rats with complete HPC damage. These finding score against the idea that non HPC memory storage requires a period of interaction with HPC to establish a stable, precise memory.SIGNIFICANCE STATEMENT Contrary to expectations from systems memory consolidation, we find that in the absence of a functional hippocampus (HPC) context and visual memories are formed rapidly and exhibit normal persistence and precision. The findings suggest that the HPC is not obligatory for these features of long-term memories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call