Abstract
Unrepaired DNA double-strand breaks (DSB) are the most destructive chromosomal lesions driving genomic instability, a core hallmark of cancer. Here, we identify the antioncogenic breast cancer factor INT6/EIF3E as an essential regulator of DSB repair that promotes homologous recombination (HR)-mediated repair and, to a lesser extent, nonhomologous end-joining repair. INT6 silencing impaired the accrual of the ubiquitin ligase RNF8 at DSBs and the formation of ubiquitin conjugates at DSB sites, especially Lys63-linked polyubiquitin chains, resulting in impaired recruitment of BRCA1, BRCA2, and RAD51, which are all involved in HR repair. In contrast, INT6 deficiency did not affect the accumulation of RNF168, 53BP1, or RPA at DSBs. In INT6-silenced cells, there was also an alteration in DNA damage-induced localization of MDC1, a key target for ATM phosphorylation, which is a prerequisite for RNF8 recruitment. The attenuated DNA damage localization of RNF8 resulting from INT6 depletion could be attributed to the defective retention of ATM previously reported by us. Our findings deepen insights into how INT6 protects against breast cancer by showing how it functions in DSB repair, with potential clinical implications for cancer therapy. Cancer Res; 76(20); 6054-65. ©2016 AACR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.