Abstract

In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography (HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor. The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner.

Highlights

  • In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose

  • Serine phosphorylated peptides derived from the insulin receptor p subunit phosphorylated by Insulin Receptor-associated SePine Kinase kinase (IRSK) in uitro demonstrates similar migration on high pressure liquid chromatography (HPLC) (Fig. Z), and two-dimensional analysis (Fig. 5) as phosphopeptides from insulin receptor phosphorylated in intact cells (Fig. 4)

  • One tryptic phosphopeptide derived from insulin receptor phosphorylated by IRSK appears to be SSHCQR corresponding to residues 1293-1298 of the deduced sequence of the human insulin receptor cDNA

Read more

Summary

Introduction

In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. No phosphorylation of peptide substrates for Ca’+/calmodulindependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.