Abstract

In human intestinal smooth muscle cells, endogenous insulin-like growth factor-I (IGF-I) regulates growth and IGF-binding protein-5 (IGFBP-5) expression. The effects of IGF-I are facilitated by IGFBP-5. We previously showed that IGFBP-5 acts independently of IGF-I in human intestinal muscle to stimulate proliferation and upregulate IGF-I production by activation of Erk1/2 and p38 MAPK. Thus a positive feedback loop exists between IGF-I and IGFBP-5, whereby both stimulate muscle growth and production of the other factor. In Crohn's disease, IGF-I and IGFBP-5 expression are increased and contribute to stricture formation through this effect on muscle growth. To determine the signaling pathways coupling IGFBP-5 to MAPK activation and growth, smooth muscle cells were isolated from muscularis propria of human intestine and placed into primary culture. Erk1/2 and p38 MAPK activation and type I collagen production were measured by immunoblot. Proliferation was measured by [(3)H]thymidine incorporation. Activation of specific G proteins was measured by ELISA. AG1024, an IGF-I receptor tyrosine kinase inhibitor, was used to isolate the IGF-I-independent effects of IGFBP-5. IGFBP-5-induced phosphorylation of Erk1/2 and p38 MAPK and proliferation were abolished by pertussis toxin, implying the participation of Gi. IGFBP-5 specifically activated Gi3 but not other G proteins. Transfection of an inhibitory Galphai minigene specifically inhibited MAPK activation, proliferation, and both collagen-I and IGF-I production. Our results indicate that endogenous IGFBP-5 activates Gi3 and regulates smooth muscle growth, IGF-I production, and collagen production via the alpha-subunit of Gi3, independently of IGF-I, in normal human intestinal muscle cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call