Abstract

Phosphodiesterase type 5 inhibitors (PDE5i), widely used to treat male erectile dysfunction, seem to counteract insulin resistance (IR) in animals and humans. IR, primarily manifest in peripheral tissues and particularly in skeletal muscle, is due to impaired insulin signal transduction. Investigators have been focusing onto intracellular defects responsible for IR to identify suitable pharmacological tools targeted toward the specific defects. Albeit some effects of PDE5i have been reported onto animal muscular tissues or cells, whether and how they might affect metabolic processes directly in human skeletal muscle still remains unclear. We aimed to investigate in human fetal skeletal muscle cells (Hfsmc) the effect of tadalafil, one of PDE5i, onto some intracellular factors involved in response to insulin, such as ras-raf mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt), glycogen synthase kinase 3β (GSK-3β), and the transcriptional factor c-Myc; proliferation rate; lactate (lact) and free fatty acid (ffa) release; activity of citrate synthase (CS) and succinate dehydrogenase (SDH), both enzymes of Kreb's cycle; PDE5 gene expression. Western blot analysis, enzyme-linked immunosorbent assay, enzymatic assays, cell count, MTT assay and Real Time PCR were performed in Hfsmc with and without tadalafil. In Hfsmc tadalafil affected the insulin-related intracellular cascade, by increasing MAPK, PKB/Akt, GSK-3β phosphorylation and c-Myc expression. ffa release and CS activity also significantly increased, with no changes in SDH activity and lact release. Tadalafil, like insulin, targeted part of the machinery dedicated to energy management and metabolic control in human skeletal muscle cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call