Abstract

Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has antioxidant, antiinflammatory, and antiapoptotic effects in many physiological systems. HO-1 activity in obese mice is lower than in controls, and a sustained increase in HO-1 protein levels ameliorates insulin resistance and compensatory hyperinsulinemia. In the present study, we explored the regulatory effect of insulin on HO-1 expression in 3T3-L1 adipocytes and the underlying mechanism. We investigated the time- and dose-effect of insulin on HO-1 expression in 3T3-L1 adipocytes. Using specific inhibitors acting on insulin signaling pathways, we clarified the involvement of insulin downstream signaling molecules in insulin-regulated HO-1 expression. We also investigated the involvement of microRNAs (miRNAs) in insulin-regulated HO-1 expression using microarray and real-time RT-PCR assays. In an in vivo study, we performed insulin/glucose coinfusion in rats to increase circulating insulin levels for 8 h, then measured adipocyte HO-1 expression. Insulin caused a significant increase in HO-1 expression that was time- and dose-dependent, and this effect was blocked by inhibition of phosphatidylinositol 3 (PI3)-kinase activation using LY294002 (50 μM) or of protein kinase C activation using Ro-318220 (2 μM), but not by an Akt inhibitor, triciribine (10 μM). Furthermore, incubation of 3T3-L1 adipocytes with 100 nm insulin resulted in a significant decrease in levels of the miRNAs mir-155, mir-183, and mir-872, and this effect was also blocked by pretreatment with LY294002 or Ro-318220, but not triciribine. An in vivo study in rats showed that 8 h of a hyperinsulinemic euglycemic state resulted in a significant increase in adipocyte HO-1 expression. In conclusion, insulin increases HO-1 protein expression in 3T3-L1 adipocytes via PI3-kinase and protein kinase C-dependent pathways and miRNAs down-regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.