Abstract

The purpose of the present study was to determine the effect of insulin therapy on hepatic function, structure, and hepatic mRNA and protein cytokine expression during the hypermetabolic cascade post burn. Liver function and morphology are crucial for survival of patients suffering from trauma, operations, or infections. Insulin decreased mortality and prevented the incidence of multiorgan failure in critically ill patients. Rats received a thermal injury and were randomly divided into the insulin or control group. Our outcome measures encompassed the effect of insulin on hepatic proteins, hepatic pro- and anti-inflammatory cytokines mRNA and proteins, hepatocyte proliferation, including Bcl-2 and hepatocyte apoptosis, with caspases-3 and caspases-9. Insulin significantly improved hepatic protein synthesis by increasing albumin and decreasing c-reactive protein and fat (P < 0.05). Insulin decreased the hepatic inflammatory response signal cascade by decreasing hepatic pro-inflammatory cytokines mRNA and proteins IL-1beta and tumor necrosis factor at pretranslational levels. Insulin increased hepatic cytokine mRNA and protein expression of IL-2 and IL-10 at a pretranslational level when compared with controls (P < 0.05). Insulin increased hepatocyte proliferation along with Bcl-2 concentration, while decreasing hepatocyte apoptosis along with decreased caspases-3 and -9 concentration, thus improving liver morphology (P < 0.05). Our data provide insight that insulin attenuates the inflammatory response by decreasing the pro-inflammatory and increasing the anti-inflammatory cascade, thus restoring hepatic homeostasis, which has been shown to be critical for organ function and survival of critically ill patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.