Abstract

Gestational diabetes mellitus (GDM) is associated with an increased risk of metabolic disorders in offspring in later life. Although mounting evidence suggests that therapy for GDM could improve neonatal health, whether the therapy confers long-term metabolic benefits to offspring in their later adult lives is not known. Here, using a mouse model of diabetes in the latter half of pregnancy to mimic human GDM, we find that the efficient insulin therapy for GDM confers significant protection against glucose intolerance and obesity in offspring fed a normal chow diet. However, the therapy fails to protect offspring when challenged with a high-fat diet, especially for male offspring. Genome-wide DNA methylation profiling of pancreatic islets from male offspring identified hypermethylated regions in several genes that regulate insulin secretion, including Abcc8, Cav1.2, and Cav2.3 that encode KATP or Ca2+ channels, which are associated with reduced gene expression and impaired insulin secretion. This finding suggests a methylation-mediated epigenetic mechanism for GDM-induced intergenerational glucose intolerance. It highlights that even efficient insulin therapy for GDM is insufficient to fully protect adult offspring from diet-induced metabolic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.