Abstract

Insulin resistance is associated with vascular disease. Physiological concentrations of insulin inhibit cultured vascular smooth muscle cell (VSMC) contraction and migration by increasing nitric oxide (NO)-stimulated cGMP accumulation. The failure to do so in insulin-resistant states may aggravate vascular disease. We sought to determine the mechanism of insulin's increase in cGMP accumulation. Isobutylmethylxanthine, an inhibitor of phosphodiesterase activity, inhibited the decline in cGMP levels measured by immunoassay in cGMP-loaded cultured rat aortic VSMCs, but 1 nmol insulin did not. Thus, insulin's increase in cGMP accumulation is due to stimulated production, not inhibited hydrolysis and/or efflux. Insulin, which increases the NADH/NAD+ ratio in these cells, stimulated superoxide anion (O2-) accumulation measured by lucigenin luminescence to 256+/-25% (P<0.05) by a process that was blocked by the NADH oxidase inhibitor diphenyliodonium (DPI) and enhanced by the superoxide dismutase inhibitor diethyldithiocarbonate (DETCA). Insulin also stimulated hydrogen peroxide (H2O2) accumulation measured by horseradish peroxidase/luminol luminescence to 221+/-22% (P<0.05) by a DETCA-sensitive mechanism. H2O2 (100 micromol/L) in the absence of insulin increased NO-stimulated cGMP accumulation to 151+/-11% (P<0.05). Insulin alone increased NO-stimulated cGMP accumulation to 183+/-17% (P<0.05), and this was blocked by either DPI or DETCA. We conclude that insulin increases NADH oxidase-derived O2- production in cultured rat VSMCs. This did not cause the expected scavenging of NO resulting in the reduction of NO-stimulated guanylate cyclase activity, but enough O2- was metabolized to H2O2 to increase overall NO-stimulated cGMP production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call