Abstract
The underlying molecular mechanisms leading to insulin dysregulation are poorly understood in horses. Therefore, this study aimed to determine if insulin dysregulation is associated with an altered basal expression and extent of phosphorylation of key proteins of the insulin signaling cascade in liver (LT), muscle (MT), and subcutaneous adipose tissue (AT) under basal and stimulated conditions. Twelve Icelandic horses were subjected (1) to an oral glucose (Gluc PO) challenge and (2) to an intravenous (Ins IV) insulin challenge in a crossover study. Biopsies of LT, MT, and AT were taken in vivo under basal conditions and after Gluc PO and Ins IV stimulation. Corresponding insulin levels were measured by an equine optimized ELISA (Mercodia AB, Uppsala). Insulin levels ≥ 110 µIU/mL at 120 min indicated that six horses were insulin dysregulated (HI), while six were not (NI). Gluc PO stimulation resulted in a more pronounced hyperinsulinemia and hyperglycemia in HI horses compared to NI horses. Western blot analysis of key proteins of the insulin signaling cascade revealed an enhanced phosphorylation of the insulin receptor (InsR) under Gluc PO (P = 0.001) and Ins IV stimulation (P = 0.017) within LT, but not in MT and AT. Phosphorylation of protein kinase B was enhanced under Gluc PO stimulation in all tissues and under Ins IV stimulation in MT and AT, while phosphorylation of adenosine monophosphate protein kinase α was reduced after glucose administration (P = 0.005) in all horses. Interestingly, HI horses had significantly higher amounts of phosphorylated mechanistic target of rapamycin (mTOR) in MT (P = 0.049), irrespective of any stimulation. In LT, the amount of phosphorylated mTOR decreased under Gluc PO conditions in HI horses, while an increase was observed in NI horses (P = 0.015). A major limitation was the inclusion of only Icelandic horses of advanced age since insulin dysregulation could be related to both the equine metabolic syndrome and/or pituitary pars intermedia dysfunction. In summary, insulin signaling appeared to be maintained in both HI and NI Icelandic horses, although post-receptor alterations were observed. Thus, ID might be an equine-specific metabolic condition, in which alterations of the mTOR signaling pathway may play a crucial role, as emphasized by higher mTOR phosphorylation in HI horses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.