Abstract

Although insulin is known to be an important generator of regulatory signals during fetal growth and development, neither the immediate nor long-term effects of alcohol (ethanol) on insulin action are well understood. In the rat, fetal exposure to alcohol has been shown to be correlated with a subsequent abnormal response to a glucose load in the neonate and adult. Further, fetal hypoplasia secondary to maternal alcohol consumption is correlated with decreased placental glucose transport and with a lowering of the glucose levels in fetal tissues. However, the fetal effects of alcohol cannot be completely overcome by glucose/caloric supplementation, suggesting that factors other than glucose transport are involved. Using an embryonic chick model that negates the factors of maternal/placental metabolism and transport, the current study found that fetal alcohol exposure markedly increased insulin binding in developing tissue, but had little effect on the binding of the insulin-like growth factors. Competitive binding experiments revealed a marked increase in insulin receptor numbers, but no change in binding affinity as a result of the alcohol exposure. Basal uptake of 2-deoxyglucose by fetal tissue was lowered by alcohol exposure, but incubation with exogenous porcine insulin (1 x 10(-7) M) resulted in a significant increase in glucose uptake by the alcohol-exposed embryos. The increases in insulin binding and in insulin-dependent glucose uptake notwithstanding, exogenous insulin could not induce normal levels of ornithine decarboxylase activity in embryonic cells previously exposed to alcohol.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call