Abstract

The effects of the sodium-hydrogen (Na/H) exchange inhibitor cariporide (HOE642), on insulin sensitivity and vascular function were studied in the JCR:LA-cp rat and the db/db mouse. In the insulin-resistant rat, cariporide reduced fasting insulin levels (42%, P < 0.02) and insulin response in a meal tolerance test (50%, P < 0.01), indicating increased insulin sensitivity. The ACE inhibitor, ramipril, used as a reference agent, reduced the insulin response to the meal, but not fasting levels. The EC50 for acetylcholine-mediated relaxation of phenylephrine-precontracted aortic rings was significantly lower in cariporide-treated rats (P < 0.002), but not in ramipril-treated rats. Flow response of the coronary circulation to bradykinin was significantly greater in both cariporide- and ramipril-treated rats, (3-fold decrease in the EC50, P < 0.05). Cariporide-treated hearts were smaller, slower beating, with greater developed LVP. In the obese db/db mouse, chronic treatment with cariporide obviated vascular hypercontractility and improved endothelial function. Thus, cariporide had beneficial effects on the abnormal insulin metabolism and associated vascular dysfunction in the JCR:LA-cp insulin-resistant rat, which develops advanced cardiovascular disease and ischemic myocardial lesions. It also improved vascular function in a similar mouse model of insulin resistance. These effects were markedly greater than those of ramipril.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.