Abstract

Friedreich's Ataxia (FRDA) is a multi-system disorder caused by frataxin deficiency. FRDA-related diabetes mellitus (DM) is common. Frataxin supports skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, a mediator of insulin sensitivity. Our objective was to test the association between skeletal muscle health and insulin sensitivity and secretion in adults with FRDA without DM. Case-control study (NCT02920671). Glucose and insulin metabolism (stable-isotope oral glucose tolerance tests), body composition (dual-energy x-ray absorptiometry), physical activity (self-report), and skeletal muscle OXPHOS capacity (creatine chemical exchange saturation transfer MRI) were assessed. Participants included 11 individuals with FRDA (4 female), median age 27y (IQR 23, 39), BMI 26.9kg/m2 (24.1, 29.4), and 24 controls (11 female), 29y (26, 39), 24.4kg/m2 (21.8, 27.0). Fasting glucose was higher in FRDA (91 vs. 83mg/dL (5.0 vs. 4.6mmol/L), p<0.05). Individuals with FRDA had lower insulin sensitivity (WBISI 2.8 vs. 5.3, p<0.01), higher post-prandial insulin secretion (insulin secretory rate iAUC 30-180 minutes, 24,652 vs. 17,858, p<0.05), and more suppressed post-prandial endogenous glucose production (-0.9% vs. 26.9% of fasting EGP, p<0.05). In regression analyses, lower OXPHOS and inactivity explained some of the difference in insulin sensitivity. More visceral fat contributed to lower insulin sensitivity independent of FRDA. Insulin secretion accounting for sensitivity (disposition index) was not different. Lower mitochondrial OXPHOS capacity, inactivity, and visceral adiposity contribute to lower insulin sensitivity in FRDA. Higher insulin secretion appears compensatory, and when inadequate, could herald DM. Further studies are needed to determine if muscle- or adipose-focused interventions could delay FRDA-related DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.