Abstract

L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58+/-0.01 fold and the GLUT4 content 1.96+/-0.11 fold, as well as the 2-deoxyglucose uptake 1.53+/-0.09 and 1.86+/-0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.