Abstract
Hypertension in obesity and insulin resistance has been attributed to insulin stimulation of sympathetic neural output and renal sodium retention. However, recent data demonstrates a significant vasodilatory effect of insulin and suggests that vascular smooth muscle resistance to this action may instead be the cause of hypertension in insulin resistance. This concept is supported by the observation that pharmacological amplification of peripheral insulin sensitivity results in reduced arterial pressure. Insulin attenuates vasoconstrictor responses to pressor agonists and accelerates vascular smooth muscle relaxation, while these effects are blunted in obesity and insulin resistance. Insulin regulation of vasoconstriction and vascular relaxation appears to be secondary to regulation of intracellular Ca2+ ([Ca2+]i), as insulin attenuates both voltage- and receptor-mediated Ca2+ influx and stimulates both the transcription and activity of Ca(2+)-ATPase in vascular smooth muscle cells. Further, these effects are also blunted in insulin resistance. Although [Ca2+]i plays a poorly understood role in insulin signalling, increases beyond an optimal range results in impaired insulin sensitivity, possibly by Ca(2+)-inhibition of insulin-induced dephosphorylation of insulin-sensitive substrates. Consistent with this concept, ectopic overexpression of the agouti gene in the viable yellow (Avy) mouse results in increased skeletal myocyte [Ca2+]i. Accordingly, increased [Ca2+]i in primary insulin target tissues appears to result in peripheral insulin resistance which then results in aberrant regulation of vascular smooth muscle [Ca2+]i and increases in arterial pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.