Abstract

BackgroundIt is unclear whether insulin resistance (IR) contributes to excess mortality in patients with type 2 diabetes independent of diabetic kidney disease (DKD), which is strongly associated with IR and is a major risk factor for cardiovascular disease (CVD), the main cause of death in these individuals. We tested this hypothesis in patients with type 2 diabetes from the Renal Insufficiency And Cardiovascular Events Italian Multicentre Study.MethodsThis observational, prospective, cohort study enrolled 15,773 patients with type 2 diabetes attending 19 Italian Diabetes Clinics in 2006–2008. Insulin sensitivity was assessed as estimated glucose disposal rate (eGDR), which was validated against the euglycaemic-hyperinsulinemic clamp technique. Vital status on October 31, 2015, was retrieved for 15,656 patients (99.3%). Participants were stratified by eGDR tertiles from T1 (≥ 5.35 mg/kg/min) to T3 (≤ 4.14 mg/kg/min, highest IR).ResultsCVD risk profile was worse in T2 and T3 vs T1. eGDR tertiles were independently associated with micro- and macroalbuminuria and the albuminuric DKD phenotypes (albuminuria with preserved or reduced estimated glomerular filtration rate [eGFR]) as well as with eGFR categories or the nonalbuminuric DKD phenotype. Over a 7.4-year follow-up, unadjusted death rates and mortality risks increased progressively across eGDR tertiles, but remained significantly elevated after adjustment only in T3 vs T1 (age- and gender- adjusted death rate, 22.35 vs 16.74 per 1000 person-years, p < 0.0001, and hazard ratio [HR] adjusted for multiple confounders including DKD, 1.140 [95% confidence interval [CI], 1.049–1.238], p = 0.002). However, eGDR was independently associated with mortality in participants with no DKD (adjusted HR, 1.214 [95% CI, 1.072–1.375], p = 0.002) and in those with nonalbuminuric DKD (1.276 [1.034–1.575], p = 0.023), but not in those with the albuminuric DKD phenotypes. Moreover, the association was stronger in males and in younger individuals and was observed in those without but not with prior CVD, though interaction was significant only for age.ConclusionsThe proxy of insulin sensitivity eGDR predicts all-cause mortality in type 2 diabetes, independent of confounders including DKD. However, the impact of IR in individuals with albuminuric DKD may be mediated by its relationship with albuminuria.Trial registrationClinicalTrials.gov, NCT00715481, retrospectively registered 15 July 2008.

Highlights

  • It is unclear whether insulin resistance (IR) contributes to excess mortality in patients with type 2 diabetes independent of diabetic kidney disease (DKD), which is strongly associated with IR and is a major risk factor for cardiovascular disease (CVD), the main cause of death in these individuals

  • We aimed to assess whether estimated glucose disposal rate (eGDR) is independently associated with all-cause mortality in type 2 diabetes (T2D) individuals or its relationship with death is mediated through the association with DKD

  • Binary logistic regression analyses exploring the relationship between eGDR tertiles and DKD showed an independent association with micro- and macroalbuminuria and the albuminuric DKD phenotypes as well as with estimated glomerular filtration rate (eGFR) categories and the nonalbuminuric DKD phenotype (Additional file 2: Table S1)

Read more

Summary

Introduction

It is unclear whether insulin resistance (IR) contributes to excess mortality in patients with type 2 diabetes independent of diabetic kidney disease (DKD), which is strongly associated with IR and is a major risk factor for cardiovascular disease (CVD), the main cause of death in these individuals. We tested this hypothesis in patients with type 2 diabetes from the Renal Insufficiency And Cardiovascular Events Italian Multicentre Study. Death rates declined among nondiabetic individuals, but reductions were significantly greater among people with diabetes, so that differences in all-cause and CVD mortality between individuals with and without diabetes were reduced by about a half [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call