Abstract

ObjectiveThe aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among Chinese children and adolescents. Moreover, to determine the cut-off values for homeostasis model assessment of insulin resistance (HOMA-IR) at MS risk.Methods3203 Chinese children aged 6 to 18 years were recruited. Anthropometric and biochemical parameters were measured. Metabolic syndrome (MS) was identified by a modified Adult Treatment Panel III (ATP III) definition. HOMA-IR index was calculated and the normal reference ranges were defined from the healthy participants. Receiver operating characteristic (ROC) analysis was used to find the optimal cutoff of HOMA-IR for diagnosis of MS.ResultsWith the increase of insulin resistance (quintile of HOMA-IR value), the ORs of suffering MS or its related components were significantly increased. Participants in the highest quintile of HOMA-IR were about 60 times more likely to be classified with metabolic syndrome than those in the lowest quintile group. Similarly, the mean values of insulin and HOMA-IR increased with the number of MS components. The present HOMA-IR cutoff point corresponding to the 95th percentile of our healthy reference children was 3.0 for whole participants, 2.6 for children in prepubertal stage and 3.2 in pubertal period, respectively. The optimal point for diagnosis of MS was 2.3 in total participants, 1.7 in prepubertal children and 2.6 in pubertal adolescents, respectively, by ROC curve, which yielded high sensitivity and moderate specificity for a screening test. According to HOMA-IR > 3.0, the prevalence of insulin resistance in obese or MS children were 44.3% and 61.6% respectively.ConclusionsOur data indicates insulin resistance is common among Chinese obese children and adolescents, and is strongly related to MS risk, therefore requiring consideration early in life. As a reliable measure of insulin resistance and assessment of MS risk, the optimal HOMA-IR cut-off points in this cohort were developed with variation regarding puberty. HOMA-IR may be useful for early evaluating insulin resistance in children and teenagers and could have a long-term benefit of preventive and diagnostic therapeutic intervention.

Highlights

  • Childhood obesity has experienced an important increase all over the world

  • Our study aims are to evaluate the association of insulin resistance (IR) with each of the components of metabolic syndrome (MS) and to determine homeostasis model assessment of insulin resistance (HOMA-IR) cut-off values of different pubertal status regarding the diagnosis of MS based on a large cohort of Chinese schoolchildren

  • A total of 3203 schoolchildren (1679 boys) who had completed the further examination without missing data on variables needed for defining the MS were included in the current study; among them 420 subjects were diagnosed with MS according to the modified criteria of Adult Treatment Panel III (ATP III) definition [13,15] and 1037 subjects with normal weight status and without any components of MS were included serving as reference population

Read more

Summary

Introduction

Childhood obesity has experienced an important increase all over the world. It has been associated with the rising prevalence of many metabolic complications, such as hyperlipidemia, hyperglycemia and high blood pressure [1]. The gold-standard technique for assessment of insulin sensitivity is the hyperinsulinemiceuglycemic clamp [4]; and another accepted method is the minimal-model analysis frequently sampled intravenous glucose tolerance test (FSIVGTT) [5]. These tests are invasive, labor intensive, and expensive, which can be used for research purposes only. As a more convenient method to measure insulin resistance, the homeostasis model assessment of insulin resistance (HOMA-IR) was developed and widely used in clinical and epidemiologic studies [6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call