Abstract

K(+) currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K(+) current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3-4 wk treatment or after 5-6 h in vitro) enhanced the sustained K(+) current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K(+) current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K(+) current in a manner suggesting synthesis of new channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.