Abstract

The control of glucose uptake and glycogen metabolism by insulin in target organs is in part mediated through the regulation of protein-serine/threonine kinases. In this study, the expression and phosphotransferase activity levels of some of these kinases in rat heart ventricle were measured to investigate whether they might mediate the shift in the energy dependency of the developing heart from glycogen to fatty acids. Following tail-vein injection of overnight fasted adult rats with 2 U of insulin per kg body weight, protein kinase B (PKB), the 70-kDa ribosomal S6 kinase (S6K), and casein kinase 2 (CK2) were activated (30-600%), whereas the MAP/extracellular regulated kinases (ERK)1 and ERK2 were not stimulated under these conditions. When the expression levels of the insulin-activated kinases were probed with specific antibodies in ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats, phosphatidylinositol 3-kinase (PI3K), PKB, S6K, and CK2 were downregulated (40-60%) with age. By contrast, ventricular glycogen synthase kinase-3beta (GSK3beta) protein levels were maintained during postnatal development. Similar findings were obtained when the expression of these kinases was investigated in freshly isolated ventricular myocytes, where they were detected predominantly in the cytosolic fraction of the myocytes. Compared to other adult rat tissues such as brain and liver, the levels of PI3K, PKB, S6K, and GSK3beta were relatively low in the heart. Even though CK2 protein and activity levels were reduced by approximately 60% in 365 day as compared to 1-day-old rats, expression of CK2 in the adult heart was as high as detected in any of the other rat tissues. The high basal activities of CK2 in early neonatal heart may be associated with the proliferating state of myocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.