Abstract

A family of insulin receptor substrate (IRS) proteins mediates the pleiotropic effects of insulin and insulin-like growth factor 1 (IGF-1) on cellular function by recruiting several intracellular signalling networks. Conventional murine knockout strategies have started to reveal distinct physiological roles for the IRS proteins. Deletion of Irs1 produces a mild metabolic phenotype with compensated insulin resistance but also causes marked growth retardation. In contrast, mice lacking IRS-2 display nearly normal growth but develop diabetes owing to a combination of peripheral insulin resistance and beta-cell failure. As well as the classical metabolic events regulated by insulin signalling pathways, studies in lower organisms have implicated insulin/IGF-1 signalling pathways in the control of food intake and reproductive function. Our analysis of IRS-2 knock-out mice shows that female mice are infertile owing to defects in the hypothalamus, pituitary and gonad. IRS-2(-/-) mice have small, anovulatory ovaries with reduced numbers of follicles. Levels of the pituitary hormones luteinizing hormone and prolactin and gonadal steroids are low in these animals. Pituitaries of IRS-2(-/-) animals are decreased in size and contain reduced numbers of gonadotrophs. Additionally, IRS-2(-/-) females display increased food intake and develop obesity, despite elevated leptin levels, suggesting abnormalities in hypothalamic function. Coupled with recent observations that brain-specific deletion of the insulin receptor causes a similar phenotype, these findings implicate IRS signalling pathways in the neuroendocrine regulation of reproduction and energy homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.