Abstract

We have studied the effects of chronic exposure to insulin on the binding and the biologic activity of the hormone using a well-differentiated cell line (Fao) derived from the Reuber H35 rat hepatoma. Prolonged incubation (24 h) with 10(-6) M insulin produced a 20-25% decrease in binding of tracer concentrations (2 X 10(-11) M) of 125I-insulin, and a leftward shift of the curve for inhibition by unlabeled insulin. Scatchard analysis of the binding data revealed that a 75-80% decrease in the number of binding sites had occurred in the insulin-treated cells, but was accompanied by an increase in apparent receptor affinity. Kinetic studies suggested negative cooperativity in insulin binding and indicated that the change in affinity was accounted for by a decrease in the rate of dissociation. Both the decrease in receptor number and the increase in affinity were dependent on time, temperature, and the insulin concentration during the treatment period. Both effects were also blocked by cycloheximide, suggesting that they required new protein synthesis. Plasma membranes isolated from downregulated cells retained both the change in receptor number and affinity. Anti-receptor antibodies present in two human sera (B-2 and B-9) inhibited 125I-insulin binding in downregulated cells with equal or slightly greater sensitivity than in control cells. The changes in insulin binding were accompanied by changes in insulin's biologic effects in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.