Abstract

Insulin gene expression has been demonstrated in nonpancreatic tissues early in development, suggesting that this hormone might have actions significant for the differentiating embryo. Because such actions imply ligand-receptor binding, we quantified mRNAs encoding the two known forms of insulin receptor in rat liver and yolk sac, two endodermally derived tissues shown to express insulin genes, between gestation days (E) 13 and E21 (mid-organogenesis to parturition). Because of its presumed importance for fetal growth, we estimated the abundance of mRNA encoding insulin-like growth factor 1 (IGF 1) receptor in the same samples for comparison. The abundance of insulin receptor mRNA exceeded that for IGF 1 receptor mRNA in liver and yolk sac at all times studied. This difference was greater in liver, where insulin receptor mRNAs were three to more than 50 times more abundant than IGF 1 receptor mRNA on gestation days E13-E16, times which antedate the development of significant hepatic metabolic actions of insulin. The marked abundance of mRNAs encoding insulin receptors is consistent with the hypothesis that insulin has significant actions in specific tissues during the organogenic period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call