Abstract
SAT1-3 comprise members of the recently cloned family of System A transporters that mediate the sodium-coupled uptake of short chain neutral amino acids, and their activity is regulated extensively by stimuli such as insulin, growth factors, and amino acid availability. In skeletal muscle, insulin stimulates System A activity rapidly by a presently ill-defined mechanism. Here we demonstrate that insulin induces an increase in the plasma membrane abundance of SAT2 in a phosphatidylinositol 3-kinase-dependent manner and that this increase is derived from an endosomal compartment that is required for the hormonal activation of System A. Chloroquine, an acidotropic weak base that impairs endosomal recycling of membrane proteins, induced a complete inhibition in the insulin-mediated stimulation of System A, which was associated with a loss in SAT2 recruitment to the plasma membrane. The failure to stimulate System A and recruit SAT2 to the cell surface could not be attributed to a block in insulin signaling, as chloroquine had no effect on the insulin-mediated phosphorylation of protein kinase B or glycogen synthase kinase 3 or upon insulin-stimulated GLUT4 translocation and glucose transport. Our data indicate strongly that insulin increases System A transport in L6 cells by stimulating the exocytosis of SAT2 carriers from a chloroquine-sensitive endosomal compartment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.