Abstract
The rigorous maintenance of normoglycemia by the administration of insulin is beneficial to critically ill patients. Because insulin induces endothelial nitric oxide (NO) release, and the constitutive release of NO maintains normal microvascular permeability, the authors postulated that insulin would prevent peroxide (H(2)O(2))-induced endothelial barrier dysfunction, an effect dependent on endothelial NO synthase (eNOS) activity. Murine lung microvascular endothelial cells (LMEC) grown to confluence on 8 micro pore polyethylene filters were exposed to media (control), H(2)O(2) (20 to 500 micromol/L), insulin (1 to 1,000 nmol/L) or insulin (100 nmol/L) + H(2)O(2) (10(-4)mol/L). Endothelial monolayer permeability was quantitated by measuring the transendothelial electrical resistance at 15-minute intervals for 120 minutes. Other cells were exposed to H(2)O(2) and insulin after pretreatment with a NO scavenger (PTIO), an eNOS inhibitor (L-NIO), or a phosphoinositol-3-kinase inhibitor (LY-294002). H(2)O(2) caused a concentration- and time-dependent reduction in electrical resistance consistent with an increase in monolayer permeability. This effect was prevented by insulin. Inhibiting NO release (L-NIO, LY-294002) or scavenging NO (PTIO) abolished this protective effect. These data suggest that insulin may modulate endothelial barrier function during oxidant stress by inducing the release of NO.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.