Abstract

Insulin receptor substrate 1 (IRS-1) is the principle cellular substrate for insulin and insulin-like growth factor I (IGF-I) receptor signaling. After phosphorylation of tyrosine residues within the YMXM or YXXM motifs, IRS-1 associates with phosphatidylinositol-3 kinase (PI3K). This signaling pathway and the presence of an IRS-1-like molecule have been demonstrated in IRS-1-transfected and in nontransfected hematopoietic cell lines, respectively. IGF-I has been implicated in lymphocyte development and function, and recently, we showed that functional type-I IGF receptors are present on human thymocytes and peripheral T cells. In this study, we addressed IGF-I signal transduction in nontransformed, freshly isolated, human thymocytes, as well as in blood T cells. Using Western blot analysis, we found that IGF-I induced phosphorylation of a 160-180-kD protein (pp170) in human thymocytes and that phosphorylated pp170 becomes associated with PI3K and is recognized by anti-IRS-1. In blood T cells, this immunoreactive IRS-1 (irIRS-1) is less abundantly expressed than in thymocytes, as assessed with immunoblotting. As a consequence, phosphorylated pp170 was not or hardly detectable after stimulation with IGF-I, and irIRS-1 was not detected in PI3K immunoprecipitates from lysates of IGF-I-stimulated T cells. However, IGF-I induced the tyrosine phosphorylation of other cellular proteins, indicating that differential expression of irIRS-1 contributes to a distinct signaling pathway in T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.