Abstract

Previous work from this laboratory has shown that the constant sc infusion of insulin-like growth factor I (IGF-I) to normal pituitary monkeys results in a sustained elevation in circulating concentrations of IGF-binding protein-3 (IGFBP-3), whereas the acute administration of IGF-I to monkeys pretreated with a GH receptor antagonist produces a brief, but significant, elevation in serum IGFBP-3. The present study tested the hypothesis that the constant infusion of IGF-I would normalize serum concentrations of IGFBP-3 in females treated with the GH receptor antagonist. To assess the biological significance of these effects, serum levels of the acid-labile subunit (ALS) and biomarkers for bone formation, osteocalcin, and collagen type I C-terminal propeptide, were also examined. Five female rhesus monkeys were studied over 21 consecutive days involving 7 days of baseline, 7 days of treatment with the GH receptor antagonist (1.0 mg/kg-week, sc), and 7 days of treatment with the GH receptor antagonist supplemented with IGF-I (120 microg/kg x day, sc infusion with osmotic minipump). Within 48 h of the initiation of treatment with the GH receptor antagonist, serum IGF-I and IGFBP-3 were decreased by 40% and 18% from baseline, respectively, and levels continued to decline through the remainder of treatment. However, within 48 h of the initiation of IGF-I administration during GH receptor antagonist treatment, both serum IGF-I and IGFBP-3 were elevated and normalized to baseline values. Serum concentrations of ALS were also decreased by GH antagonism, but levels increased in some (n = 2), but not all, subjects upon administration of IGF-I. Size exclusion ultrafiltration indicated that the amount of IGF-I found in the high molecular mass complex (>100 kDa) decreased significantly during GH antagonism, but was similar during the baseline and IGF-I infusion phases. Finally, treatment with the GH receptor antagonist also significantly reduced serum levels of osteocalcin and collagen type I C-terminal propeptide, an effect reversed by the addition of IGF-I. These data support the hypothesis that IGF-I increases serum concentrations of IGFBP-3 when endogenous GH action is compromised and that such treatment produces biologically active IGF-I, as evidenced by normalization of biomarkers for bone formation. These results indicate that IGF-I administration during GH receptor antagonism restores circulating levels of IGFBP-3 and the amount of IGF-I found in the high molecular mass complex to levels observed during baseline conditions. It remains to be determined whether IGF-I directly affects hepatic synthesis and secretion of IGFBP-3 and what role IGF-I has in the direct regulation of ALS in the monkey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.