Abstract

Chronic renal failure in childhood causes severe growth retardation. The aim of the study was to identify whether changes in the IGF system could account for the growth retardation observed in children with chronic renal failure. Insulin-like growth factor (IGF-I) serum concentrations, insulin-like growth factor binding proteins (IGFBP) and/or IGF-I binding to erythrocyte type I receptor of IGF were analysed in 69 children (mean age 11.6 +/- 4.3 years) with chronic renal failure and growth retardation (mean height -2.6 +/- 1.8 SD). The study population was separated into three groups, according to their renal status, children on conservative treatment (CRF group: n = 30), on haemodialysis (ESRD group: n = 26) and those transplanted (RT group: n = 13). Nineteen of these children, some from each of the three groups, received recombinant growth hormone therapy (rhGH). Mean basal IGF-I serum concentrations were -0.7 +/- 1.2 SD in the CRF group, + 2.1 +/- 3 SD in the ESRD group and + 1.1 +/- 2 SD in the RT group. Under rhGH therapy, as height velocity improved, mean IGF-I concentrations increased up to + 3.1 +/- 0.6 SD in the CRF group, to + 6.9 +/- 2.8 SD in the ESRD group and to + 3.9 +/- 2 SD in the RT group. Basal IGFBP-3 levels, studied by Western Ligand Blot were low in the CRF group and high in the ESRD and normal in the RT groups, whereas IGFBP-2 and a 30-32 kDa IGFBP were always high in all cases. Western immunoblot analysis showed that this 30-32 kDa IGFBP was mostly composed of IGFBP-1 and IGFBP-6 in all three groups, but IGFBP-6 was particularly abundant in the ESRD group. IGFBP-6 concentrations assessed by RIA were moderately increased in CRF children (392 +/- 177 ng/mL) and very high in children on ESRD (2094 +/- 1525 ng/mL) when compared to normal values (131 +/- 42 ng/mL). Binding studies of IGF type I receptor showed that there was no particular difference in IGF-I binding between renal failure patients and normal children. In poorly growing children, especially in ESRD children and to a lesser extent in RT children, high concentrations of IGF-I and IGFBP-1, 2, 3 and 6, suggest a resistance mainly by a sequestration mechanism. Moreover, in the CRF group, especially in the younger children, low levels of IGF-I and IGFBP-3 are evocative of an associated resistance at the GH receptor level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call