Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) and insulin-like growth factor-I (IGF-I) are produced by human intestinal smooth muscle cells. Endogenous IGF-I stimulates growth and increases IGFBP-5 secretion. IGFBP-5 augments the effects of IGF-I by facilitating interaction of IGF-I with the IGF-I receptor tyrosine kinase. Andress (Andress, D. L. (1998) Am. J. Physiol. 274, E744-E750) and Berfield et al. (Berfield, A. K., Andress, D. L., and Abrass, C. K. (2000) Kidney Int. 57, 1991-2003) have shown that in osteoblasts and kidney mesangial cells, IGFBP-5 stimulates proliferation and filopodia formation independently of IGF-I, presumably by activating a distinct IGFBP-5 receptor serine kinase. The present study determined whether IGFBP-5 exerts direct effects on growth in human intestinal smooth muscle cells and identified the intracellular signaling pathways involved. IGFBP-5 caused a concentration-dependent increase in [(3)H]thymidine incorporation and an increase in IGF-I secretion that occurred independently of IGF-I and the IGF-I receptor tyrosine kinase. IGFBP-5-induced phosphorylation of p38 MAP kinase, which was abolished by SB203580, or expression of a dominant negative Ras mutant, Ras(S17N), and phosphorylation of Erk1/2, which was abolished by a Raf1 kinase inhibitor, U1026, or expression of Ras(S17N). IGFBP-5-stimulated [(3)H]thymidine incorporation and IGF-I secretion were partly inhibited by SB203580 or U1026 and abolished by the combination of the two inhibitors or by expression of Ras(S17N). These data show that IGFBP-5 stimulates growth and IGF-I secretion in human intestinal smooth muscle cells by activation of p38 MAP kinase-dependent and Erk1/2-dependent pathways that are independent of IGF-I. A positive feedback mechanism therefore links IGFBP-5 and IGF-I secretion that reinforces their individual effects on growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.