Abstract
Overexpression of pathogenic membrane proteins drives abnormal proliferation and invasion of tumor cells. Various strategies to durably knockdown membrane proteins with heterobifunctional degraders have been successfully developed, including LYTAC, KineTAC, and AbTAC. However, challenges including complicated synthetic procedures and the inability to simultaneously degrade multiple pathogenic proteins still exist. Herein, we developed insulin-like growth factor 2 (IGF2)-tagged aptamer chimeras (ITACs) that link the cell-surface lysosome-targeting receptor IGF2R and membrane proteins of interest (POIs) based on specific recognition of aptamers to the POIs and high-affinity binding of IGF2 to IGF2R. We demonstrated that ITACs exhibit robust degradation efficiency of various membrane proteins in multiple cell lines. Furthermore, systematic studies revealed that a moderate cell-surface IGF2R level is responsible for the excellent degradation performance of ITACs. Importantly, we further established a modular assembly strategy that allows assembly of one IGF2 with two aptamers with precise stoichiometry (dITACs), enabling cooperative and simultaneous degradation of two membrane proteins. This work provides an efficient and facile target membrane protein degradation platform and will shed light on the treatment of diseases related to the overexpression of membrane proteins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.