Abstract

Diabetes mellitus (DM) is a major risk factor for the development of atherosclerosis, and high-serum levels of insulin are strongly associated with type 2 DM. Atherosclerosis is characterized by lipid-laden macrophage foam cell formations, which contain substantial amount of cholesterol and triglycerides (TG). This study analyzed for the first time, the effects of insulin on TG metabolism in macrophages under normal and diabetic conditions. Mouse peritoneal macrophages from C57BL6 mice were cultured under normal (5 mM) or high (diabetic condition, 25 mM) glucose concentration, with or without insulin, followed by the assessment of TGs metabolism in these cells. Under diabetic condition, insulin increased TG accumulation in macrophages by 100%, decreased cellular TG degradation by 21%, and increased C-reactive protein levels in macrophages by 83%. Insulin decreased hormone-sensitive lipase mRNA and protein expression by 28 and 60%, respectively, and adipose TG lipase (ATGL) protein expression by 36%, with no significant reduction in ATGL mRNA levels. The inhibition of insulin-mediated phosphorylation, and the addition of cyclic adenosine 3'5'-monoposphate, abolished the insulin-mediated inhibition of TGs degradation in cells. Insulin increases macrophage TGs accumulation only under diabetic conditions, suggesting that impaired glycemic control in diabetic patients treated with insulin may contribute to foam cell formations and enhanced inflammation in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.