Abstract

BackgroundInsulin growth factor 1 (IGF-1) is reported to modulate cell growth and acts as potential therapy for traumatic brain injury. This study was designed to investigate the effect of IGF-1 on hypoxia-induced apoptosis in neural stem cells (NSCs).Material/MethodsA hypoxia model was constructed using NSCs separated from the hippocampus of rat. NSCs were divided into four groups: cells under normoxic conditions that acted as controls (C group), cells under hypoxia (H group), cells under hypoxia with IGF-1 (HI group), and cells under hypoxia with IGF-1 as well as picropodophyllin (PPP), which acts as an inhibitor of the IGF-1 receptor (HIP group). The cell viability and apoptosis were respectively measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Finally, the phosphorylation levels of apoptosis-associated proteins and key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways were detected by Western blot analysis.ResultsIn comparison with the H group, the cell viability was increased while the cell apoptosis was reduced by IGF-1 in the HI group. Besides, the expression levels of Bax, cytochrome c, and activated caspase-3 were all improved in the H group, and the remarkable differences were eliminated in the HI group compared with the C group. The expression level of Bcl-2 was the opposite. Additionally, down-regulations of phosphorylated AKT, MAPK, and ERK induced by hypoxia were all improved by IGF-1. All the influences of IGF-1 were weakened by addition of PPP.ConclusionsIGF-1 increased cell viability while decreasing apoptosis in hypoxic NSCs through the PI3K/AKT and MAPK/ERK pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.