Abstract

Inhibitory synaptic currents from fast-spiking neurons (FSNs), a typical gamma-aminobutyric acid (GABA)ergic interneuron in the cerebral cortex, to pyramidal neurons are facilitated by insulin. FSNs frequently show electrical synapses to FSNs, however, the effect of insulin on these electrical synapses is unknown. The aim of this study was to evaluate effects of insulin on electrical synaptic potentials between FSNs. Electrical synaptic potentials via gap junctions between FSNs were recorded to examine how insulin modulates these potentials in the rat insular cortex (IC). Bath application of insulin (10 nM), which increases the spike firing rate of pyramidal neurons and unitary inhibitory postsynaptic currents recorded from FSN to pyramidal neuron connections, slightly but significantly increased electrical synaptic currents. The mean ratio of electrical synapses, the coupling coefficient that is obtained by postsynaptic voltage responses divided by presynaptic voltage amplitude, was 8.3 ± 1.1% in control and 9.2 ± 1.1% (n = 14) during 10 nM insulin application. Input resistance and voltage responses to large hyperpolarizing currents (-140 pA) were not changed by insulin. These results suggest that insulin facilitates spike synchronization by increasing electrical synaptic currents via gap junctions of GABAergic FSNs in the IC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.