Abstract
Insulin plays a key role in the maintenance of nutrient homeostasis through central regulation of neuropeptides. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) are vital orexigenic peptides that are regulated by insulin, although the processes utilized are unknown. Using a hypothalamic, clonal cell line, mHypoE-46, which endogenously expresses NPY, AgRP and the insulin receptor, we studied the mechanisms involved in the regulation of the NPY/AgRP neuron by insulin. We determined that insulin has direct actions on the neurons and acts to repress NPY/AgRP gene expression through a MAPK MEK/ERK-dependent pathway. Transient transfection analysis determined that human NPY and AgRP 5′ flanking gene regions were not regulated by insulin in the mouse cell line, while sequence comparison analysis indicated only a 50% sequence similarity between human and mouse NPY and AgRP 5′ flanking regions. These experiments indicate that insulin acts directly on specific hypothalamic neurons to regulate neuropeptide transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.