Abstract

Myofibrillar protein breakdown in skeletal muscle progresses through two distinct phases in response to chronic glucocorticoid administration in the rat, i.e., an early phase lasting 4-5 days, during which proteolysis increases followed by a later phase during which proteolysis decreases. The possible involvement of insulin and the iodothyronines in this phenomenon has now been examined. Diabetic, thyroidectomized, and normal rats were treated with corticosteroid for 10-11 days, and at timed intervals muscle proteolysis was evaluated by measuring the release of 3-methyl-L-histidine (3-MH) and tyrosine from the perfused hindquarter as well as the excretion of 3-MH in the urine. Corticosterone (CTC) administration to normal rats increased plasma insulin, whereas plasma 3,5,3'-triiodothyronine responded with an early rise followed by a fall after 4-5 days. However, the biphasic response of myofibrillar proteolysis to chronic glucocorticoid treatment was not abolished in CTC-treated diabetic or thyroidectomized rats. CTC treatment increased release of tyrosine by perfused muscle of diabetic rats but, unlike 3-MH release, did not diminish later. Thus the adaptation of myofibrillar proteolysis to chronic glucocorticoid treatment appears to be independent of insulin and thyroid hormones. However, insulin may play a role in curtailing glucocorticoid-induced breakdown of nonmyofibrillar proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call