Abstract

Insulin and peptides derived from the processing of proglucagon have been isolated from an extract of the pancreas of the South American horned frog, Ceratophrys ornata (Leptodactylidae). Ceratophrys insulin is identical to the insulin previously isolated from the toad, Bufo marinus (Bufonidae). Ceratophrys glucagon was isolated in two molecular forms with 29- and 36-amino acid residues in approximately equal amounts. Glucagon-29 is identical to glucagon from B. marinus and from the bullfrog, Rana catesbeiana (Ranidae) and contains only 1 amino acid substitution (Thr29→Ser) compared with glucagon from Xenopus laevis (Pipidae). Glucagon-36 comprises glucagon-29 extended from its C-terminus by Lys-Arg-Ser-Gly-Gly-Met-Ser. This extension is structurally dissimilar to the C-terminal octapeptide of mammalian oxyntomodulin and resembles more closely that found in C-terminally extended glucagons isolated from fish pancreata. Ceratophrys glucagon-like peptide-1 (GLP-1) (His-Ala-Asp-Gly-Thr-Tyr-Gln-Asn-Asp-Val10-Gln-Gln-Phe-Leu-Glu- Glu-Lys-Ala-Ala-Lys20-Glu-Phe-Ile-Asp-Trp-Leu-Ile-Lys-Gly- Lys30-Pro-Lys-Lys-Gln-Arg-Leu-Ser) contains 3 amino acid substitutions compared with the corresponding peptide from B. marinus, 8 substitutions compared with GLP-1 from R. catesbeiana, and between 4 and 11 substitutions compared with the three GLP-1 peptides identified in X. laevis proglucagon. GLP-2 was not identified in the extract of Ceratophrys pancreas. The data indicate that, despite its importance in the regulation of glucose metabolism, the primary structure of GLP-1 has been very poorly conserved during evolution, even among a single order such as the Anura.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call