Abstract

Hepatic steatosis results from several processes. To assess their relative roles, hepatocellular long-chain fatty acid (LCFA) uptake was assayed in hepatocytes from C57BL/6J control mice, mice with steatosis from a high-fat diet (HFD) or 10%, 14%, or 18% ethanol (EtOH) in drinking water [functioning leptin-signaling groups (FLSGs)], and ob/ob and db/db mice. V(max) for uptake was increased vs. controls (P < 0.001) and correlated significantly with liver weight and triglycerides (TGs) in all FLSG mice but was minimally or not increased in ob/ob and db/db mice, in which liver weights and TGs greatly exceeded projections from regressions in FLSG animals. Coefficients of determination (R(2)) for these FLSG regressions suggest that increased LCFA uptake accounts for ∼80% of the increase in hepatic TGs within these groups, but increased lipogenic gene expression data suggest that enhanced LCFA synthesis is the major contributor in ob/ob and db/db. Got2, Cd36, Slc27a2, and Slc27a5 gene expression ratios were significantly upregulated in the EtOH groups, correlating with sterol regulatory element binding protein 1c (SREBP1c) and V(max), but only Cd36 expression was increased in HFD, ob/ob, and db/db mice. Comparison of V(max) with serum insulin and leptin suggests that both hormones contribute to upregulation of uptake in the FLSG animals. Thus, increased LCFA uptake, reflecting SREBP1c-mediated upregulation of four distinct transporters, is the dominant cause of steatosis in EtOH-fed mice. In ob/ob and db/db mice, increased LCFA synthesis appears more important. In FLSG animals, insulin upregulates hepatocellular LCFA uptake. Leptin appears to upregulate LCFA uptake or to be essential for full expression of upregulation by insulin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.