Abstract

1. The heterologous expression of glucose transporters GLUT4 and GLUT1 in Xenopus oocytes has been shown to cause a differential targeting of these glucose-carrier isoforms to cellular membranes and a distinct induction of glucose transport activity. In this study we have evaluated the effect of insulin and insulin-like growth factor I (IGF-I) on glucose uptake and glucose transporter distribution in Xenopus oocytes expressing mammalian GLUT4 and GLUT1 glucose carriers. 2. Insulin and IGF-I stimulated 2-deoxyglucose uptake in GLUT4-expressing oocytes, but not in GLUT1-expressing oocytes or in water-injected oocytes. The stimulatory effect of insulin and IGF-I on 2-deoxyglucose uptake in GLUT4-expressing oocytes occurred via activation of the IGF-I receptor. 3. Subcellular-fractionation studies indicated that insulin and IGF-I stimulated translocation of GLUT4 to the cell surface of the oocyte. 4. Incubation of intact oocytes with insulin stimulated phosphatidylinositol 3-kinase activity, an effect that was blocked by the additional presence of wortmannin. Furthermore, wortmannin totally abolished the insulin-induced stimulation of 2-deoxyglucose uptake in GLUT4-expressing oocytes. 5. In this study, both the insulin-induced GLUT4 carrier translocation and GLUT4-dependent insulin-stimulated glucose transport have been reconstituted in the Xenopus oocyte. These observations, together with the fact that wortmannin, as found in adipocytes, inhibits insulin-stimulated glucose transport in oocytes, suggest that the heterologous expression of GLUT4 in oocytes is a useful experimental model by which to study the cell biology of insulin-induced GLUT4 translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.