Abstract

We examined the interplay between the insulin/IGF-1- and beta-catenin-regulated pathways, both of which are suspected to play a role in hepatocarcinogenesis. Insulin and IGF-1 stimulated the transcription of a Lef/Tcf-dependent luciferase reporter gene by 3-4-fold in HepG2 cells. This stimulation was mediated through the activation of phosphatidylinositol 3-kinase (PI 3-K)/Akt and the inhibition of glycogen synthase kinase-3beta (GSK-3beta) since the effects of insulin and IGF-1 were inhibited by dominant-negative mutants of PI 3-K or Akt and an uninhibitable GSK-3beta. Together with inhibiting GSK-3beta, insulin and IGF-1 increased the cytoplasmic levels of beta-catenin. The PI 3-K/Akt/GSK-3beta pathway was not the sole to mediate insulin and IGF-1 stimulation of Lef/Tcf-dependent transcription. The Ras signalling pathway was also required as (i) the stimulatory effects of insulin and IGF-1 were inhibited by dominant-negative Ras or the MEK1 inhibitor PD98059 and (ii) activated Ha-Ras or constitutively active MEK1 synergized with catalytically inactive GSK-3beta to stimulate Lef/Tcf-dependent transcription. This study provides the first evidence that insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades bifurcating downstream of PI 3-K and involving GSK-3beta inhibition and Ras activation. These findings demonstrate for the first time the ability of insulin and IGF-1 to activate the beta-catenin pathway in hepatoma cells and thereby provide new insights into the role of these factors in hepatocarcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call