Abstract

Diabetes mellitus is the most common metabolic disease in the world. Herein, insulin- and cholic acid-loaded zein nanoparticles with dextran surfaces were fabricated to enhance the oral absorptions of insulin in the intestine and in the liver which is the primary action organ of endogenous insulin. In the nanoparticles, zein acted as cement to embed insulin, cholic acid and casein by hydrophobic interactions. The hydrophilic dextran conjugated to casein by the Maillard reaction was located on the nanoparticle surface. The nanoparticles had an insulin loading efficiency of 74.6%, a cholic acid loading efficiency of 55.1% and a hydrodynamic diameter of 267 nm. The dextran significantly increased the disperse stability of the nanoparticles, protected the loaded insulin from hydrolysis in digestive juices, and increased the trans-mucus permeability of the insulin. The embedded cholic acid molecules were consecutively exposed to the surface when the nanoparticles were gradually eroded by proteases. The exposed cholic acid promoted the absorptions of the nanoparticles in the ileum and liver via bile acid transporters. The effect of pretreated lymphatic transport inhibitor cycloheximide revealed that about half of the nanoparticles were transported via the intestinal lymphatic transport pathway and the other half of the nanoparticles were transported via portal blood absorption. The oral pharmacological bioavailability of the nanoparticles in type I diabetic mice was 12.5-20.5%. This study demonstrates that nanoparticles are a promising oral delivery system for insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.