Abstract

Therapeutic proteins are privileged in drug development because of their exquisite specificity, which is due to their three-dimensional conformation in solution. During their manufacture, storage, and delivery, interactions with material surfaces and air interfaces are known to affect their stability. The growing use of automated devices for handling and injection of therapeutics increases their exposure to protocols involving intermittent wetting, during which the solid-liquid and liquid-air interfaces meet at a triple contact line, which is often dynamic. Using a microfluidic setup, we analyze the effect of a moving triple interface on insulin aggregation in real time over a hydrophobic surface. We combine thioflavin T fluorescence and reflection interference microscopy to concomitantly monitor insulin aggregation and the morphology of the liquid as it dewets the surface. We demonstrate that insulin aggregates in the region of a moving triple interface and not in regions submitted to hydrodynamic shear stress alone, induced by the moving liquid. During dewetting, liquid droplets form on the surface anchored by adsorbed proteins, and the accumulation of amyloid aggregates is observed exclusively as fluorescent rings growing eccentrically around these droplets. The fluorescent rings expand until the entire channel surface sweeped by the triple interface is covered by amyloid fibers. On the basis of our experimental results, we propose a model describing the growth mechanism of insulin amyloid fibers at a moving triple contact line, where proteins adsorbed at a hydrophobic surface are exposed to the liquid-air interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.